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•Unlike brain, DNNs are vulnerable to environmental changes

•Brain’s early visual pathway has innate Gabor-like receptive 
fields that remain stable throughout visual experience

•Our model: Fixed Gabor filters in the early layer (GbDNN)
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Q. Can Gabor-like receptive fields in the early layer 
enable environment-agnostic object recognition?
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▪GbDNN robustly maintained performance under various domain changes
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▪GbDNN produces invariant object representations across domains

▪GbDNNs show shape-biased object classification ▪Gabor filters reduce dimensionality of learned representations

→ Gabor filters produce low-dimensional representations, enhancing generalizability
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•Hard-wired Gabor filters, resembling the receptive fields of V1 neurons, enable environment-agnostic object recognition 
•Unlike DNNs which cluster based on image domains, our model spontaneously clustered same objects across various domains in the latent space, 
•Fixed Gabor filters allow shape-biased object classifications, suggesting that these filters highly prevented overfitting. 
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