3-157 Stable receptive fields in the early visual pathways enable robust continual learning

Minjun Kang¹, Gwangsu Kim^{1, 2}, Hyeonsu Lee³, Seungdae Baek³ & Se-Bum Paik^{1, 3, 4}

¹Department of Brain and Cognitive Sciences, ²Life Science Research Institute, ³Department of Bio and Brain Engineering, ⁴Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea

Results 1 (Key results)

%

accuracy

(%) 100

50

accuracy

100

50

• DNN entirely lost performance, but DNN+Gabor maintained performance

DNN (AlexNet)

DNN+Gabor

...

M N

AL A

Train 2

Train 1

No Photo

Brain&Cognitive

CV

Photo training

90

epoch

Chance

Sciences

 Continual learning is a key feature of animals but a challenging problem for conventional DNNs (lose performance)

Introduction

(Sketch) (Photo)

(paired t-test,. ***: p<0.001)

180

n.s.

Accuracy

for Photo

Accuracy

for Sketch

accuracy

KAIST

Lab

Sketch training

fields that remain stable throughout visual experience

Q. Can stable receptive fields in the early layer enable continual learning under dynamic environments?

• Our Model: Fixed Gabor filters in the early layer (DNN+Gabor)

• DNN+Gabor maintained performance robustly for all domain changes

Results 2

 Fixed Gabor filters enable networks to have similar representations across different domains

Results 3

Fixing filters is crucial for continual learning under domain change

Conclusion

- Networks with fixed Gabor filters, resembling stable early visual circuitry, maintained performance and representation under dynamic environments.
- Our results suggest that fixed Gabor filters in early layers could be key architectures for continual learning in dynamic environments.
- These may highlight the functional significance of innate, stable early visual pathways in the brain.