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Does the prefrontal cortex guide optimal foraging?
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Laboratory for

1. Introduction 3. Task Design

Meta-RL can explain human reinforcement learning (RL) Two-step Markov decision task Foraging rules for task design: two task conditions (MAX, MIN)

(Lee et al., 2014)

— :Human action (L/R) To simulate MB, MF RL either compete or cooperate, we designed two task conditions
———————— > :Random flip
Model-based (MB) RL Model-free (MF) RL with (pg, 1 — p¢) Goals for each condition Possible task controls per each trial Results of task controls (20 trials)
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4. Results

MB RL MB RL trial (time)
: Task condition validation after model-fittin Model fitness analysis (n = 19 Neural data GLM analysis (n = 25
Q. Then, what strategy would a model-based system use to adapt to a dynamic J 3IC = Baves o y ( ) | . | d | ( )
. paired t-test (*: p<0.05, **:p<le-2, ***: p<le-3) = Bayesian Information Criterion « different subjects from behavior analysis
environment? (lower BIC = more preferred model) * 25 subjects, ten females, 23.7+3.8 years
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2. Hypothesis Model Suggestion 2 " . 2= 20mm
reward(r) .
subjects (n=19) * p<0.05 FWE
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Model-based system would use the temporal difference (TD) rule to i 1100 | * dIPFCactivation
update the internal reward estimation A (Z-score: 5.99)
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Our model explains subject’s Model comparison 5 e , : * Found neural evidence that the
reward acquisition c = 4 e | | prefrontal cortex guides foraging
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romosed model (MB.RPE model MB MF Meta — Rl — controlled as intended initially PV MIN condition
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: trial(ltime) : : : : MB = model-based / MF = model-free 5. cOnclusions

RL = reinforcement learning
RPE = reward prediction error

Research purposes * We proposed a strategy for the model-based system to adapt to a dynamic environment with varying rewards
 Through a simulation study, we designed foraging tasks with the Markov decision process with two different conditions
* Test whether Meta-RL with MB-RPE model best explains human behavior * From the behavior data analysis, our proposed model best explained the human behavior data regardless of the environmental conditions
* Find neural evidence that brains generate MB-RPE signals * From fMRI data analysis, we found evidence that the prefrontal cortex guides the foraging
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